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Abstract
We calculate the linear response thermopower S of a quantum point contact
using the Landauer formula and therefore assume non-interacting electrons.
The purpose of the paper is to compare analytically and numerically the
linear thermopower S of non-interacting electrons to the low-temperature
approximation, S(1) = (π2/3e)k2

BT ∂µ[ln G(µ, T = 0)], and the so-called
Mott expression, SM = (π2/3e)k2

BT ∂µ[ln G(µ, T )], where G(µ, T ) is the
(temperature-dependent) conductance. This comparison is important, since the
Mott formula is often used to detect deviations from single-particle behaviour
in the thermopower of a point contact.

1. Introduction

A narrow constriction in for example a two-dimensional electron gas makes a small channel
between two electron reservoirs. This constriction is called a quantum point contact [1].
The width of the channel can be controlled by a gate voltage, and by applying a small bias
the phenomenon of quantized conductance as a function of the width (i.e. gate voltage) is
observed at low temperatures [2]. This quantization is due to the wave nature of the electronic
transport through the short ballistic point contact. Experimentally [3–7], it is also possible
to heat up one of the sides of the point contact, thereby producing a temperature difference
�T across the contact, which in turn gives an electric current (and a heat current) though the
point contact. By applying a bias V in the opposite direction to the temperature difference
�T , the two contributions to the electric current I can be made to cancel, which defines the
thermopower S as

S = − lim
�T→0

V

�T

∣
∣
∣
∣

I=0

. (1)

For a quantum point contact, the thermopower as a function of gate voltage has a peak every
time the conductance plateau changes from one subband of the transverse quantization to the
next [5, 8].
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In order to compare experiment and theory for the thermopower of a point contact, the
so-called Mott formula,

SM ∝ ∂Vg [ln G(Vg, T )], (2)

is often a valuable tool, because by differentiating the experimentally found conductance
G(Vg, T ) with respect to the gate voltage Vg one can see if there is more information in
the thermopower that in the conductance. This additional information could for example
be many-body effects [7], since SM is an approximation to the single-particle thermopower.
Note that this approximation is independent of the specific form of the transmission T (ε)

through the point contact. It is the purpose of this paper to determine the validity of the Mott
approximation SM, and thereby decide if it is really deviations from single-particle behaviour
the experiments [6, 7, 9] reveal or rather artefacts of this approximation.

2. Thermopower from the Landauer formula

For the sake of completeness, we begin by deriving the single-particle thermopower formula
in linear response to the applied bias V and temperature difference �T . The current though a
ballistic point contact is found from the Landauer formula [10, p 111, equation (7.30)]:

I = 2e

h

∫ ∞

0
dε T (ε)[ f 0

L (ε) − f 0
R(ε)], (3)

where T (ε) is the transmission and f 0
i (ε) is the Fermi function for the right/left (i = R, L)

lead. The Landauer formula assumes non-interacting electrons and therefore so will the
derived thermopower formula. When a small bias V = (µL − µR)/(−e) and temperature
difference �T = TL − TR are applied, we can expand the distribution functions around µ, T
as (|�T |/T � 1 and |eV | � µ):

f 0
i (ε) � f 0(ε) − ∂ε f 0(ε)(µ − µi ) − (ε − µ)∂ε f 0(ε)

T − Ti

T
, (4)

where f 0(ε) is the Fermi function with the equilibrium chemical potential µ and temperature
T and i = L, R. To obtain the thermopower equation (1) we insert the distribution functions
in equation (3), set it equal to zero and obtain

S(µ, T ) = 1

eT

∫ ∞
0 dε T (ε)(ε − µ)[−∂ε f 0(ε)]

∫ ∞
0 dε T (ε)[−∂ε f 0(ε)]

, (5)

which is our exact single-particle formula.

3. Approximations to the thermopower and their validity

3.1. The low-temperature (first-order) approximation

For T = 0 we have −∂ε f 0(ε) = δ(ε − µ), so the numerator in equation (5) is zero,
i.e. S(µ, T = 0) = 0. For temperatures kBT much lower than the scale of variation of T (ε)

and kBT � µ, we can expand T (ε) around µ to first order (i.e. a Sommerfeld expansion) to
obtain

S(1)(µ, T ) = π2

3

kB

e
kBT

1

T (µ)

∂T (µ)

∂ε
= π2

3

kB

e
kBT

1

G(µ, T = 0)

∂G(µ, T = 0)

∂µ
, (6)

where G(µ, T = 0) is the conductance for zero temperature, i.e. G(µ, T = 0) = 2e2

h T (µ).
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3.2. The Mott approximation and analytical considerations of its validity

The Mott approximation1 [6, 7] is

SM(µ, T ) = π2

3

kB

e
kBT

1

G(µ, T )

∂G(µ, T )

∂µ
, (7)

where G(µ, T ) is the temperature-dependent conductance

G(µ, T ) = 2e2

h

∫ ∞

0
dε T (ε)[−∂ε f 0(ε)]. (8)

The form of SM stated in equation (2) assumes that the chemical potential and gate voltage
are linear dependent. The Mott approximation to the single-particle thermopower equation (5)
and its range of validity are not so obvious compared to the approximation of the first-order
Sommerfeld expansion equation (6).

One way of comparing S from equation (5) and SM is to differentiate equation (8) to obtain
(assuming that T (ε) is independent of µ):

SM(µ, T ) = π2

3

kB

e

1

G(µ, T )

∫ ∞

0
dε T (ε) tanh

(
ε − µ

2kBT

)

[−∂ε f 0(ε)], (9)

i.e. by using the Mott formula we approximate (ε − µ)/kBT in the integral by
(π2/3) tanh[(ε − µ)/(2kBT )].

To compare S and SM in another way, we observe that for low temperatures kBT � µ the
Mott approximation SM simplifies to the S(1) equation (6), because G(µ, T ) → 2e2

h T (µ) for
T → 0, i.e. S(µ, T ) = S(1)(µ, T ) = SM(µ, T ) for kBT/µ → 0. Therefore, we compare S
and SM by expanding both quantities in orders of kBT and comparing order by order. Using

T (ε) =
∞∑

n=0

1

n!

∂nT (µ)

∂εn
(ε − µ)n, (10)

we can exactly rewrite equation (8):

G = 2e2

h

∞∑

n=0

1

n!

∂nT (µ)

∂εn

∫ ∞

0
dε (ε − µ)n[−∂ε f 0(ε)]

= 2e2

h

∞∑

n=0

1

n!

∂nT (µ)

∂εn
(kBT )nBn

(
µ

kBT

)

, (11)

where (y = (ε − µ)/kBT )

Bn

(
µ

kBT

)

≡
∫ ∞

− µ

kB T

dy
yn

4 cosh2(y/2)
→ In ≡

∫ ∞

−∞
dy

yn

4 cosh2(y/2)
for kBT � µ,

(12)

where we note that I2n+1 = 0 for all integer n. Numerically, it turns out that
Bn(µ/kBT )/Bn(0) � 0 for µ � (10 + n)kBT as seen in figure 1. The integral In can
be calculated, and the first values are

I0 = 1, I2 = π2

3
, I4 = 7π4

15
, I6 = 31π6

21
, I8 = 127π8

15
, . . . . (13)

Using the approximation equation (12) we get

G(µ, T ) � 2e2

h

∞∑

n=0

1

(2n)!

∂2nT (µ)

∂ε2n
I2n(kBT )2n . (14)

1 In the early works by Mott and co-workers [11, 12] it was actually the first-order approximation equation (6) which
was referred to as the Mott formula.
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Figure 1. Left: the approximation in equation (12) is pictured for odd integer values of n from 1
(left) to 19 (right) in Bn(µ/kBT ). We note that Bn(µ/kBT )/Bn(0) � 0 for µ � (10 + n)kBT .
Right: the numerical values of the factors in the series expansions of the Mott approximation
equation (15) (lower) and the exact linear single-particle series expansion equation (16) (upper).

This leads to a Mott approximation to the thermopower for low temperatures as

SM(µ, T ) � kB

e

1

G(µ, T )

2e2

h

[ ∞∑

n=0

I2 I2n

(2n)!

∂2n+1T (µ)

∂ε2n+1
(kBT )2n+1

]

. (15)

Writing the exact single-particle thermopower S equation (5) by using equation (10) and the
approximation of low temperatures equation (12), we get

S(µ, T ) � kB

e

1

G(µ, T )

2e2

h

[ ∞∑

n=0

I2n+2

(2n + 1)!

∂2n+1T (µ)

∂ε2n+1
(kBT )2n+1

]

. (16)

We see that both formulae only have odd terms in kBT , and the first-order term is the same
(which is S(1)). However, none of the higher-order terms are the same, and in figure 1(right)
the different numerical factors of the two series expansions are seen to behave very differently
as the power of kBT grows:

I2n+2

(2n + 1)!
∼ 4.00 × n +

π2

3
and

I2 I2n

(2n)!
→ 6.58 for n � 10. (17)

So the Mott approximation is better the smaller the temperature compared to µ, but it
is not a bad approximation for moderate temperatures (i.e. kBT comparable to other energy
scales), as we shall see numerically. Note that if the approximation equation (12) is not valid,
then we have all powers of kBT .

4. Comparison of the approximations to the exact single-particle thermopower from
numerical integration

We need a specific model for the transmission to do a numerical comparison of S from
equation (5) to SM and S(1). Using a harmonic potential in the point contact, i.e. a saddle
point potential, a transmission in the form of a Fermi function can be derived [13]:

T (ε) =
nmax∑

n=1

1

exp( nε0−ε

εs
) + 1

, (18)
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Figure 2. Thermopower S from numerical integration of equation (5) (black solid line), the Mott
formula SM equation (7) (red dashed line) and the first-order approximation S(1) equation (6) (green
dotted line). From (a) to (f) the temperature is changed from the low-temperature regime kBT < εs

to kBT > εs in small steps. The smearing of the transmission εs is kept constant, and note that
εs , kBT � ε0 and εs , kBT � εF in all the graphs. The thermopowers are all in units of kB/e, but
note the different magnitudes of the thermopower from (a) to (f). The conductance G is shown (in
arbitrary units) for comparison.

(This figure is in colour only in the electronic version)

where εs is the smearing of the transmission between the steps and ε0 is the length of the
steps (often called the subband spacing). In terms of the harmonic potential V (x, y) =
const − mω2

x x2/2 + mω2
y y2/2, where x is along the channel, we have ε0 = h̄ωy and

εs = h̄ωx/(2π). Other functional forms of T have also been tested, but provided they have
the same graphical structure (such as for example a tanh dependence) the same conclusions
are obtained.

Three regimes of temperatures relevant to experiments are investigated numerically:

kBT < εs (figure 2(a)), kBT ∼ εs (figures 2(b)–(d))

and kBT > εs (figures 2(e), (f)). (19)
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The thermopower S for the transmission model equation (18) is found from numerical
integration of equation (5) and compared to the Mott approximation SM equation (7) and
the first-order approximation S(1) equation (6). In all three regimes, we have a staircase
conductance, so kBT � ε0, and G(µ, T ) is also shown in the figures (in arbitrary units) for
comparison. Furthermore, µ = εF is of order ε0, so the approximation kBT � εF used for
example in equation (12) is indeed very good. Note that all energies in the figures are given in
units of the step length ε0.

The information obtained from the numerical calculations is the following.
Figures 2(a), (b) show that for kBT being the lowest energy scale both approximations work
very well, as expected from the analytical considerations. When the temperature becomes
comparable to the smearing of the steps, kBT ∼ εs , the Culter–Mott formula works well and is
better than the first-order approximation, as seen in figures 2(b)–(d). For kBT bigger than εs ,
the Mott approximation still works quite well, whereas S(1) is no longer a good approximation.
The reason that the Mott approximation works well is found in the similar terms in the analytic
temperature expansions equations (15) and (16). Note that as kBT increases both S(1) and SM

show a tendency to overestimate S at the peaks and underestimate it at the valleys.
In summary,we have found that the Mott approximation to the single-particle thermopower

is a fairly good approximation provided the temperature is smaller than the Fermi level, but
kBT can be both compatible and larger than the smearing of the transmission εs . However, to
rule out any doubt one could use an experimental determination of T (ε) from the (very low-
temperature) conductance to find the single-particle thermopower from equation (5), which
could perhaps give an interesting comparison to the experimental result. Thereby one would
obtain an even more convincing statement of deviations from single-particle behaviour in the
thermopower.
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